Cell body reorganization in the spinal cord after elective surgery to treat sweaty palms

The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf

Sunday, July 27, 2014

Inflammation in dorsal root ganglia after peripheral nerve injury: Effects of the sympathetic innervation

Following a peripheral nerve injury, a sterile inflammation develops in sympathetic and dorsal root ganglia (DRGs) with axons that project in the damaged nerve trunk. Macrophages and T-lymphocytes invade these gan- glia where they are believed to release cytokines that lead to hyperexcitability and ectopic discharge, possibly contributing to neuropathic pain. Here, we examined the role of the sympathetic innervation in the inflammation of L5 DRGs of Wistar rats following transection of the sciatic nerve, comparing the effects of specific surgical in- terventions 10–14 days prior to the nerve lesion with those of chronic administration of adrenoceptor antago- nists. Immunohistochemistry was used to define the invading immune cell populations 7 days after sciatic transection. Removal of sympathetic activity in the hind limb by transecting the preganglionic input to the rele- vant lumbar sympathetic ganglia (ipsi- or bilateral decentralization) or by ipsilateral removal of these ganglia with degeneration of postganglionic axons (denervation), caused less DRG inflammation than occurred after a sham sympathectomy. By contrast, denervation of the lymph node draining the lesion site potentiated T-cell in- flux. Systemic treatment with antagonists of α1-adrenoceptors (prazosin) or β-adrenoceptors (propranolol) led to opposite but unexpected effects on infiltration of DRGs after sciatic transection. Prazosin potentiated the influx of macrophages and CD4T-lymphocytes whereas propranolol tended to reduce immune cell invasion. These data are hard to reconcile with many in vitro studies in which catecholamines acting mainly via β2-adrenoceptors have inhibited the activation and proliferation of immune cells following an inflamma- tory challenge. 


Autonomic Neuroscience: Basic and Clinical 182 (2014) 108117 

Neuroscience Research Australia, Randwick, NSW 2031, and the University of New South Wales, Sydney, NSW 2052, Australia

No comments:

Post a Comment